

Relationship between vitamin A, E and D with markers of obesity, chronic inflammation and insulin resistance in Mexican school-aged children.

Paulina Estrella, Mariela Camacho, Dolores Ronquillo, Jorge L. Rosado, Olga P. García Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, México.

Abstract No. 0449

INTRODUCTION

- Epidemiological studies have reported associations between micronutrient levels with obesity and chronic low-grade inflammation and insulin resistance markers (1).
- Vitamin E has been inversely associated with BMI and HOMA-IR (2,3). In some studies, vitamin A is directly associated with adiposity measurements (2,3) while others show inverse associations (4).
- Obesity has also been shown to increase the risk of vitamin D deficiency (5); additionally, low vitamin D levels are associated with insulin resistance and higher CRP concentrations (6).

OBJECTIVE

The aim of this study was to determine the relationship between levels of vitamin A, E and D with markers of obesity, insulin resistance and inflammation in schoolaged children.

METHODS

- 287 children (8.42±1.53 years) from a rural area in Mexico participated in a cross-sectional study.
- Measurements:

Anthropometric & body composition

- Waist circumference, Height, Weight
- Body fat (DXA)

Biochemical

- Glucose, Insulin, Cholesterol,
 Triglycerides
- Vitamin A, E and D
- IL6, TNFα, IL10, CRP
- Statistical analysis: Linear regression and logistic regression models were used to analyze associations between variables. All the analysis were performed with SPSS version 20.0.

RESULTS

- The combined prevalence of overweight/obesity was 28.9%.
- 18% of the children had insulin resistance.
- 2.7% of the children had high LDL, 30% presented hypertriglyceridemia and 17% showed low HDL levels.

Table 1. Relationship between anthropometric and body composition variables with vitamins concentrations (N=287).

		WC	BMI	(Z-Score)	Body fat (%)		
	β	IC 95%	β	IC 95%	β	IC 95%	
Vitamin A (µg/dL)	.287*	.152;.421	.052*	.031;.074	.301	.193; .409	
Vitamin E: lipid ratio (mg/g)	-3.83*	-5.14; -2.52	532*	744;319	-2.52*	-3.62; -1.42	
Vitamin D (nmol/L)	.018	074; .111	.004	011; .019	.048	027; .124	

^{*}p <0.05. Model adjusted by sex, age of the children and mother's schooling.

Table 2. Relationship between vitamins concentrations with risk of having insulin resistance and high levels of cytokines (N=287).

TNFα

IL10

CRP

			Е орин		120				1210			
	OR	IC 95%	OR	IC 95%	OR	IC 95%	OR	IC 95%	OR	IC 95%	OR	IC 95%
Vitamin A (µg/dL)	1.02	0.97; 1.07	1.13*	1.07; 1.19	0.99	0.95; 1.03	0.99	0.95; 1.04	1.01	0.97; 1.05	0.89*	0.84; 0.95
Vitamin E: lipid ratio (mg/g)	0.53*	0.32; 0.87	0.55*	0.36; 0.84	0.44*	0.32; 0.73	0.82	0.55; 1.21	0.83	0.56; 1.23	0.55*	0.33; 0.92
Vitamin D (nmol/L)	1.0	0.98; 1.05	0.99	0.97; 1.02	0.98	0.96; 1.01	0.99	0.96; 1.02	0.98	0.96; 1.01	1.00	0.95; 1.03

^{*}p <0.05. Model adjusted by sex, age of the children, mother's schooling and body fat percentage.

CONCLUSIONS

 Vitamin A was positively associated and vitamin E:lipid ratio was negatively associated with markers of obesity and inflammation in school-aged children living in rural Mexico.

HOMA IR

Leptin

No association was found between vitamin D and the variables studies.

REFERENCES

1. Marseglia L, Manti S, D'Angelo G, Nicotera A, Parisi E, Di Rosa G, Gitto E, Arrigo T. Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci. 2014;16:378-40.

2.Gunanti IR, Marks GC, Al-Mamun A, Long KZ. Low serum concentrations of carotenoids and vitamin E are associated with high adiposity in Mexican-American children. J Nutr. 2014;144:489-95.

3.García OP, Ronquillo D, del Carmen Caamaño M, Martínez G, Camacho M, López V, Rosado JL. Zinc, iron and vitamins A, C and e are associated with obesity, inflammation, lipid profile and insulin resistance in Mexican school-aged children. Nutrients. 2013;5:5012-30.

4.Viroonudomphol D, Pongpaew P, Tungtrongchitr R, Changbumrung S, Tungtrongchitr A, Phonrat B, Vudhivai N, Schelp FP. The relationships between anthropometric measurements, serum vitamin A and E concentrations and lipid profiles in overweight and obese subjects. Asia Pac J Clin Nutr. 2013;2:73-9.

5.Elizondo-Montemayor L, Ugalde-Casas PA, Serrano-González M, Cuello-García CA, Borbolla-Escoboza JR. (2010). Serum 25-hydroxyvitamin d concentration, life factors and obesity in Mexican children. Obesity (Silver Spring). 18(9):1805-11.

6.Roth CL, Elfers C, Kratz M, Hoofnagle AN. Vitamin D deficiency in obese children and its relationship to insulin resistance and adipokines. J Obes. 2011;2011:495101.

Acknowledges: We wish to thank the TPO/CONACYT network for the support to attend this forum.