

1918-2018

Hopkins Nutrition

A Century of Nutritional Discovery for Public Health

KIRK

Center for Human Nutrition

TIONS TAKE ONLY ONE TABLET DAILY WITH

MMS: Biological and Impact Gaps

Keith P. West, Jr., DrPH, MPH, RD George G. Graham Professor of Infant and Child Nutrition Director, Center and Program in Human Nutrition Department of International Health Johns Hopkins Bloomberg School of Public Health Baltimore, Maryland kwest1@jhu.edu Skype: kpwestjr

MMS Impact and Biological Gaps

Nutritional Exposures Coexist

- Protein-energy deficits
- Energy Excess
- Micronutrient deficiencies
 Vitamins A, E, D,
 B-complex, folate,
 zinc, iron, iodine, others

Behavioral Causes

Breast /complementary feeding SES, hygiene, education, etc

Food Systems Causes

Agricultural/animal husbandry, seasonality, infrastructure, Markets

Societal and Political Causes

Chronic disease, disabilty, mortality

Child and Maternal Health Problems

Infant or Child

- Infection
- •Inflammation
- Poor growth
- Impaired cognition, motor development
- Mortality

Adolescent or Maternal

- •Short stature
- •Thinness.... overweight
- •Infection/sepsis
- •Obstetric problems
- •Anemia
- Mortality

Micronutrients are Essential Throughout Pregnancy & Gestation

Gernand A et al Nature Rev Epidemiol 2016

WORLD HEALTH ORGANIZATION

ORGANISATION MONDIALE DE LA SANTE

27 December 1991

EB89/27

EXECUTIVE BOARD

Eighty-ninth Session

Provisional agenda item 10.2

NATIONAL STRATEGIES FOR OVERCOMING MICRONUTRIENT MALNUTRITION

Vitamin A Deficiency, Iodine Deficiency and Iron Deficiency Anemia

TABLE 1. POPULATIONS AT RISK OF AND AFFECTED BY MICRONUTRIENT MALNUTRITION, BY WHO REGION, 1991

(millions)

	Iodine deficie	ency disorders	Vitamin A deficiency		Iron deficient	
Region	At risk	Affected	At risk	Affected (xerophthalmia)	or anaemic	
Africa	150	39	18	1.3	206	
Americas	55	30	2	0.1	94	
South-East Asia	280	100	138	10.0	616	
Europe	82	14	-		27	
Eastern Mediterranean	33	12	13	1.0	149	
Western Pacific	405	30	19	1.4	1 058	
Total	1 005	225	190	13.8	2 150	

WHO, December 1991

ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Special Issue: Annals Reports ORIGINAL ARTICLE

Setting research priorities on multiple micronutrient supplementation in pregnancy

Filomena Gomes,¹ D Megan W. Bourassa,¹ Seth Adu-Afarwuah,² Clayton Ajello,³ Zulfiqar A. Bhutta,^{4,5} Robert Black,⁶ Elisabete Catarino,⁷ Ranadip Chowdhury,⁸ D Nita Dalmiya,⁹ Pratibha Dwarkanath,¹⁰ Reina Engle-Stone,¹¹ D Alison D. Gernand,¹² D Sophie Goudet,¹³ D John Hoddinott,¹⁴ Pernille Kæstel,¹⁵ Mari S. Manger,¹⁶ Christine M. McDonald,¹⁶ Saurabh Mehta,¹⁴ Sophie E. Moore,¹⁷ Lynnette M. Neufeld,¹⁸ Saskia Osendarp,¹⁹ Prema Ramachandran,²⁰ Kathleen M. Rasmussen,¹⁴ D Christine Stewart,¹¹ Christopher Sudfeld,²¹ Keith West,⁶ and Gilles Bergeron¹

Research priority score, unweighted (%)	Rank	AEA score	Question	Domain	Subdomain
83.2	1	0.47	What strategies (cash transfers, easier ANC access, free MMS, pharmacy vouchers, quality service delivery, mass media, social and behavior change communication interventions, SMS text messages, etc.) can best increase ANC attendance and adherence to MMS, including in hard-to-reach populations?	Delivery	Coverage
82.8	2	0.50	What limited set of biomarkers of nutritional status (e.g., hemoglobin) and their cutoffs can be used to identify populations that will benefit from prenatal MMS?	Description	Assessment
81.1	3	0.53	If MMS were continued through lactation, are there additional benefits for the mother and child (e.g., reduced mortality, infection, improved development, etc.)?	Discovery	Impact
80.8	4	0.49	Can community workers help identify pregnancies in the first trimester and facilitate timely ANC attendance that leads to an earlier initiation of MMS?	Delivery	Coverage
79.0	5	0.43	What is the burden of micronutrient deficiencies among pregnant women?	Description	Prevalence

78.5	6	0.46	What field-friendly methods can be used to assess multiple micronutrient deficiencies among pregnant women? (contrast all methods along cost-effectiveness, invasiveness, and training requirements)	Description	Assessment	
76.0	7	0.42	Which essential micronutrients (e.g., biomarkers or intake) beyond iron should be routinely monitored for pregnant women?	Description	Assessment	
75.2	8	0.39	Are MMS in pregnancy effective in women with low intakes of energy and protein?	Discovery	Impact	
74.4	9	0.49	What are the most effective counseling strategies about the benefits of MMS in pregnancy that lead to increased adherence to the MMS regimen?	Delivery	Adherence	
73.6	10	0.42	What MMS dosage (timing and duration) should be recommended in prepregnancy and pregnancy to achieve maximum adherence and benefits on outcomes?	Development	Implementation	
73.0	11	0.50	Can human-centered design principles (focused on the needs, contexts, behaviors, and emotions of the people) be used to increase the effectiveness of behavior-change programs and increase adherence to prenatal MMS?	Delivery	Adherence	
73.0	12	0.47	How can a policy framework be strengthened within a country to ensure the availability of MMS supplements?	Development	Implementation	
72.7	13	0.40	To what extent do MMS benefit maternal health (not just anemia or pregnancy outcomes)?	Discovery	Impact	

71.3	16	0.42	What is the most cost-effective packaging of MMS (i.e., blister packs or bulk packaging; 30-, 90-, or 180-count bottles, etc.) that will optimize both cost and adherence, without adversely affecting ANC attendance?	Delivery	Packaging	
70.9	17	0.43	In pregnant women taking MMS who develop iron deficiency anemia, what is the ideal amount and duration of additional iron supplements?	Development	Dosage	
70.2	18	0.49	What data commonly available in national surveys can be used to identify populations that will benefit from prenatal MMS?	Description	Prevalence	
70.2	19	0.40	What indicators can be measured through routine health information systems to best monitor program performance in relation to MMS delivery during pregnancy (through ANC contacts)?	Delivery	Coverage	
69.7	20	0.42	To what extent do infections blunt the impact of prenatal MMS in preventing anemia?	Discovery	Impact	
69.3	21	0.51	What are the predictive risk factors of micronutrient deficiencies among pregnant women?	Description	Prevalence	
68.3	22	0.40	Is fortification of food staples or ensuring intake of fortified foods (such as lipid-based nutrient supplements) better than providing MMS at scale, on maternal and birth outcomes?	Discovery	Formulation	
68.0	23	0.48	Would pregnancy outcomes be further improved by the addition of calcium to MMS, given WHO recommendations for calcium supplementation during pregnancy to reduce the risk of preeclampsia? How would this affect adherence, costs, and stability (given iron and calcium interaction)?	Discovery	Formulation	
67.9	24	0.47	Would outcomes be further improved by the addition of choline to MMS, especially with regard to child development? What would be the cost implications?	Discovery	Formulation	

66.3	27	0.39	Would birth outcomes be further improved by the addition of n-3	Discovery	Formulation
			LC-PUFA to MMS, given a recent Cochrane meta-analysis		
			showing reduction in preterm delivery with n-3 LC-PUFA		
			supplementation? What would be the cost implications?		
65.2	28	0.35	Are there subpopulations at risk of adverse outcomes with MMS,	Discovery	Impact
			such as stillbirths or perinatal asphyxia?		
65.1	29	0.40	Would outcomes be further improved by the addition of	Discovery	Formulation
			magnesium to MMS? What would be the implications on		
			adherence and costs?		
64.8	30	0.41	Is selenium deficiency independently associated with prematurity	Discovery	Impact
			and small-for-gestational-age?		
64.3	31	0.37	When compared with UNIMMAP, are there more cost-effective	Development	Dosage
			formulations?		
61.8	32	0.32	What is the most appropriate dosage for each micronutrient, other	Discovery	Formulation
			than iron?		

Micronutrient Deficiencies among Women of Reproductive Age – A Global View

Source: Annals NY Acad Sci, Volume: 1444, Issue: 1, Pages: 6-21, First published: 27 May 2019

Micronutrient Deficiencies in 3rd Trimester by Supplement Group, JiVitA-3, Bangladesh

Preconception vitamin E deficiency occurs in LMICs

Animals suffering from sterility do not differ so profoundly from normal in their ovarian function as they do in placental behavior.

... the placentas are abnormal...

Resorption invariably overtakes the products of conception

Ninety-six

years ago...

Factor "X"

was found

to restore

fertility in

purified diets

ON THE EXISTENCE OF A HITHERTO

UNRECOGNIZED DIETARY FAC-

TOR ESSENTIAL FOR RE-

PRODUCTION¹

THE fact has been abundantly demonstrated

that rats may be reared on a dietary regime

consisting of "purified" protein, fat and earbo-

hydrate to which an appropriate salt mixture

and adequate doses of the growth vitamines

Fat Soluble A and Water Soluble B have been

¹ University of California, aided by the Dairy

Division of the Bureus of Animal Industry of

the United States Department of Agriculture, the

Committee for Research on Sex Problems of the

National Research Council and the California

Central Creanwries. The writers desire also to express their especial thanks to Mr. C. E. Gray,

of San Francisco, and Dr. C. W. Larson, of

Washington.

rats fed

650

SCIENCE

| Vot. LVI, No. 1438

added. We have employed a ration of casein (18), cornstarch (54) and lard (15) to which outterfat (9) and salts (4) are added, the animals receiving separately and daily A gram each of dried whole yeast.

Such animals are sterile. They are chiefly so in the first generation and wholly so in the next succeeding one. The sterility of dietary origin yields a highly characteristic picture. Animals suffering from it do not differ so profoundly from normal ones in their ovarian function as they do in placental behavior. Approximately the same number of Graafian follieles mature and rupture per ovulation and the ova are fertilized and implanted. The placentæ are abnormal. They may persist almost throughout gestation but show as early as the second day of their establishment beginning blood extravasations which increase in extent. Resorption invariably overtakes the preducts of conception.

Natural foodstuffs contain a substance, X, which prevents such a sterility or which cures the disorder occasioned by the purified dietary regime. We have thus been able to witness a comparatively sudden restoration of fertility to animals of proven sterility, and whose controls continued sterile, by the administration of fresh green leaves of lettuce. Even the dried leaves of alfalfa appear to possess a similar potency. The proven efficacy of leaves invites inquiry into the certainty of segregation of the new dietary factor from vitaminas A and C. As regards A, it is conceivable that amounts of A adequate for normal growth, freedom from eye disease and, indeed, vigorous health might still be inadequate for the reproductive function. Such a conception is apparently strengthened by the reappearance of fertility which we have discovered to take place when the butterfat quota in the above diet is increased so as to constitute 24 per cent, by weight.2 A sufficient answer to this conception, however, is afforded by our demonstration that in some dictaries reproduction may be unhindered when the A content is lower than in

² Drummond (Biochess, Joser., xill, 77) has, for instance, reported two generations of animals reared on 20 per cent, butter in this diet. Evans HM, Bishop KS. On the Existence of a Hitherto Unrecognized Dietary Factor Essential for Reproduction. Science 1922;56:650-1

Fresh Lettuce

Dried Alfalfa

Hypothesis: Multiple sourced, variably processed, mutli-vendored, environmentally exposed, over-cooked vegetable oils may lack vitamin E

Photo: Dr. Klaus Kraemer, Kolkata

Omics Innovations and Applications for Public Health Nutrition: An integrated view

Sun Eun Lee

Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA

Key messages

- > Omics technologies comprise sets of molecular mapping tools that can help us understand and navigate to or from states of health, including nutriture.
- > Single omics studies explore sets of genes, epigenetic marks, transcripts, proteins, or metabolites, as well as microbial communities, in an unbiased manner

- > Trans-omics studies offer opportunities to connect, integrate, and map a group of molecules across multiple omics layers to identify pathways, interactions and feedback loops that may more fully reveal the biology and, likely, suites of diagnostic markers, therapeutic targets and pathways to and from disease states.
- > Omics approaches are transitioning from the theoretical level to the level of practical application to benefit vulnerable populations.

> Human studies need to be greatly expanded in number and breadth and rigorously designed to overcome methodological, analytical and biological complexities in omics data.

Introduction

Let's assume that you have been taken to a place you have never been before, and are not sure how you got there. The first thing you might do is look at a Google map, which may reveal several roads leading to the place, each with outlying intersections and roads from other towns. Different overlays may reveal varying terrain, weather or road conditions throughout the region leading to your destination. Now, imagine a health problem affecting a population as your destination, and the plexus of pathways (routes), biochemical networks (towns), function (traffic flow) and other influential conditions (terrain, road upkeep, weather, etc.) that may lead to the health problem, overlaid on the map. Omics technologies comprise sets of molecular mapping tools for each overlay that can help us understand and navigate to or from states of health, including nutriture. This breakthrough approach has become possible due to advances in the development and application of high-throughput technologies, which allow us to analyze large-scale biological data to form new molecular maps to health and disease.

"Omics technologies can help us understand and navigate to or from states of health"

.....

Conventional hypothesis-driven studies typically focus on a few specific molecules of interest based on prior knowledge: a nutritional deficiency or excess may set into motion a genomic aberration or epigenetic change that affects RNA expression, protein synthesis, metabolite production, or certain bacterial growth (Figure 1A). Single omics studies explore sets (individual overlays) of genes, epigenetic marks, transcripts, proteins, or metabolites, or microbial communities, in an unbiased manner. They are data-driven and provide opportunities to discover un-

Photo credits: Keith P West Jr. (A, B, and C) and Robert N Cole (D)

and blood sample collection. Is Blood samples were processed

by trained technicians at a local aboratory in Sarlahi.

in-sel electrophoresis analysis

f serum samples from pregnan epalese women

Plasma Proteomics

A Future Approach to Assess Micronutrient Status and Health for Public Health Application

Plasma Nutriproteome in Nepalese Children

Lee SE, Schulze KJ, West KP Jr Food Nutr Bull 2019

Plasma Alpha-Tocopherome (n=119 proteins; q <0.10) in 500 Nepalese Children, 6-8 Yr of Age

Lipid/VE transport/ metabolism

Plasma Proteins Predict Selenium Status

Int. J. Vitam. Nutr. Res., 85 (5-6), 2015, xxx-xxx

Original Communication

Plasma Selenium Protein P Isoform 1 (SEPP1): A Predictor of Selenium Status in Nepalese Children Detected by Plasma Proteomics

Kerry J. Schulze¹, Robert N. Cole², Raghothama Chaerkady², Lee S. F. Wu¹, Bareng A. S. Nonyane³, Sun Eun Lee¹, James D. Yager⁴, John D. Groopman⁴, Parul Christian¹, and Keith P West, Jr¹

- 'Center for Human Nutrition, Department of International Health, Bloomberg School of Public Health,
 - Johns Hopkins University, Baltimore, MD, USA
- ²Mass Spectrometry and Proteomics Core Facility, Department of Biological Chemistry, School of Medicine,
 - Johns Hopkins University, Baltimore, MD, USA
- *Program in Global Disease Epidemiology and Control, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- ⁴Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA

Received: May 19, 2015; Accepted: August 28, 2015

Table II: Plasma proteins associated with plasma log₂ selenium in children 6-8 years old (n=499) in rural Nepal¹.

	Name	gi Accession number ²	Gene symbol	n	r	R ²	р	q	% change3
	Selenoprotein P, plasma 14	62530391	SEPP1	499	0.79	0.63	3.48E-79	5.74E-06	106.9
	Glutathione peroxidase 3	6006001	GPX3	499	0.60	0.36	7.70E-06	0.0042	30.3
1	Apolipoprotein A-II	4502149	APOA2	499	0.59	0.35	0.00014	0.039	22.8

SEPP1 predicts 63% of plasma selenium concentration

Schulze KJ et al Intl J Vit Nutr Res 2016

Maternal Multiple Micronutrient J Nutr 2019 Supplementation Stabilizes Mitochondrial DNA Copy Number in Pregnant Women in Lombok, Indonesia

Lidwina Priliani,^{1,2} Elizabeth L Prado,^{3,4} Restuadi Restuadi,^{1,5} Diana E Waturangi,² Anuraj H Shankar,^{3,6} and Safarina G Malik¹

TABLE 3 The ∆ mtDNA-CN proportions of 108 pregnant women enrolled in the Supplementation with Multiple Micronutrients Intervention Trial study by supplementation group

	Supplement					
MtDNA-CN change ¹	MMN (n = 54)	IFA (n = 54)				
>10% decrease	14 (25.9)	13 (24.1)				
No change	12 (22.2)	3 (5.6)				
>10% increase	27 (51.9)	38 (70.4)				
P ²	0.021					

Antenatal Micronutrients and the J Nutr 2019 **Mitochondrial Genome: A Glimpse of Future Nutritional Investigation**

Sun Eun Lee,¹ Michael F Fenech,² and Keith P West, Jr¹

MMS may improve health of materno-placental mitochondria and, thus, bioenergetics of pregnancy

Distillation of Biological & Impact Gaps

- Reveal Hidden Hunger: before, during after pregnancy; children, leading to accurate and timely estimates of extent
- Preconceptional MMS impact
- Optimization of dosage for health: eg 1 or more RDA?
- Contextualization: diet, status, dominant diseases, resources
- Additional nutrient frontiers: Calcium, magnesium, redox agents
- Micronutrient-inflammation interactions/implications
- Extended postnatal, life stage effects of MMS
- Effects of MMS in nutrition transition societies
- Implications of anemia by cause
- Plausible biological mechanisms/pathways of MMS

